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Lecture 1



Concentration of product probability measures

1. Overview

Michel Talagrand received the Abel Prize in 2024. His 
scientific output is enormous, and it would be futile for 
anyone to attempt to cover it all or even summarize it. 

Instead we propose to solve a kind of « guided exercise » 
that will illustrate the power of this connection, following 
the lines of our recent paper with V. Rivoirard.

This remains true even if we focus on his work on product 
probability measures in the 1990s that has had an impact in 
statistics and machine learning (among other domains).  
Our goal here is much more modest. 



Why should we care about concentration of product 
probability measures ?

• Functions of independent random variables include 
suprema of empirical processes 

• Non asymptotic sub-Gaussian probability bounds for 
suprema of empirical processes can be used as non 
asymptotic substitutes of the central limit theorem to 
study the behavior of empirical risk minimizers.  

• This was the main reason for which these concentration 
results became popular in statistics and machine learning. 

This is the global picture. Let us now turn to a more specific 
issue which illustrate the importance of getting exponential  
probability bounds.



Estimator (and model) selection

A versatile approach to functional estimation consists of 
considering some (possibly huge) collection of estimators                        

 of some target  and define some genuine 
selection rule   from the data. This includes the case of a 
collection of empirical risk minimizers (model selection).

{ ̂fm}m∈ℳ f
m̂

The statistical performance of such a procedure can be 
evaluated through some given loss function  . One would 
like the risk  to be as close as possible to the oracle 
benchmark  
                              

ℓ
Eℓ( f, ̂fm̂)

inf
m∈ℳ

Eℓ( f, ̂fm)



In many cases the selection procedure involves some 
hyperparemeter    and most of the positive results ensuring 
that the selected estimator behaves approximately like an 
oracle are proved under the constraint that    is larger than 
some quantity which is more or less precisely known. The 
choice of    is left to the user… 

λ

λ

λ
Main point in what follows  

Negative results ensuring that below some critical value the 
procedure breaks down can be very helpful. The existence of  
such cut-off phenomena fully can be proved via concentration

Let us now move on to the specific simple context in which we 
will illustrate this point (our guided exercice!).



In the Euclidean space , one observes the random vector 
                                  
where the variables  are i.i.d. centered and 

normalized rv’s .  is is the level of noise which is assumed to 
be known.  is the unknown mean vector to be estimated. 

If we go back to statistics in the fifties the linear model 
assumption would specify that the unknown mean vector 
belongs to some linear subspace  of the Euclidean space  

ℝn

Y = f + σϵ
ϵj, 1 ≤ j ≤ n

σ
f

S ℝn

2. The classical linear regression framework



Once this constraint is given,  can merely be estimated by 
the least squares estimator (LSE) defined by  

                                  

f

̂f = arg min
g∈S

∥ Y − g ∥2

In the seventies many efforts have been developed to 
propose model selection criteria in order to relax the 
constraint that the mean vector belongs to a linear 
model which is given in advance. In the spirit of the 
works by Birgé and M. we have in mind that models as 
well as their collection are allowed to depend on n



Model selection proceeds in two steps:   

• Take some finite collection of linear models  
(which are merely subsets of ). To each model  
corresponds the LSE  defined on it.  

• Use the data to select a value  in , the selected model 
being  and the corresponding estimator . 

(Sm)m∈ℳ
ℝn Sm

̂fm
m̂ ℳ

Sm̂
̂fm̂

3. Model selection

According to the non asymptotic point of view the quality of 
a model selection procedure is measured by the quadratic 
risk of the resulting estimator .Ef∥ ̂fm̂ − f∥2



where   denotes the orthogonal projection  of  onto  fm Πm f f
Sm

In other words one ideally would like the selected estimator to  
behave like an oracle, i.e.  minimize the quadratic risk of ,  
which by Pythagoras’ identity can be written as 

̂fm

Ef∥ ̂fm − f∥2 = ∥f − fm∥2 + Ef∥ ̂fm − fm∥2

∥ ̂fm − fm∥2 = σ2∥Πmϵ∥2

It is interesting to analyze the random term of this expression



so that the random term is a chi-square type statistics. In 
particular the quadratic risk can be computed as

χ2
m =∥ Πm(ϵ) ∥2= ∑

1≤ j≤Dm

⟨ϵ, ϕ(m)
j ⟩2

Ef∥ ̂fm − f∥2 = ∥f − fm∥2 + σ2Dm

Mallows’ tricky idea consists of noticing that minimizing the 
quadratic risk  is equivalent to minimizing this risk minus 
the constant term , i.e.∥f∥2

Taking some orthonormal basis  of  

we see that

{ϕ(m)
j ,1 ≤ j ≤ Dm} Sm



Ef∥ ̂fm − f∥2 − ∥f∥2 = −∥fm∥2 + σ2Dm

just, by using Pythagoras’ identity again.

By similar arguments, we also have

Ef∥ ̂fm∥2 − ∥fm∥2 = σ2Dm

So that the quantity 

(*)

crit(m) = −∥ ̂fm∥2 + 2σ2Dm

turns out to be an unbiased estimator of (*)

Unbiased risk estimation and Mallows’ heuristics



Mallows’ heuristics relies on the belief that what you see in 
expectation is what you see on the data. 

Justifying or correcting this belief has been the main 
motivation for introducing concentration inequalities in our 
long-standing collaboration with Lucien Birgé on this topic, 
starting 30 years ago. 
The key is to specify how close is   to its expectation  

, uniformly with respect to .
∥ ̂fm∥2

∥fm∥2 + σ2Dm m ∈ ℳ

This is precisely Mallows’ criterion! 

χ2
m =∥ Πm(ϵ) ∥2= ∑

1≤ j≤Dm

⟨ϵ, ϕ(m)
j ⟩2

Essentially, this amounts to understand the behavior of  



The idea is to rewrite the square root of the chi-square type 
statistics as

Link with concentration issues 

P{ζ(ϵ) ≥ M + t} ≤ e−t2/2

This makes clear that  is a 1-Lipschitz function of . 
In Birgé and M. (2000)  this fact has been used in the Gaussian 
case since if  is standard normal on , it is known since 75’ 
that for a 1-Lipschitz function 

χm ϵ

ϵ ℝn

ζ

χm = sup
b∈Sm,∥b∥≤1

⟨b, ϵ⟩

where  denotes either the mean or the median of M ζ(ϵ)



Assume now that  is a Rademacher random vector.  This is 
more tricky since it is known that Lipschitz is not enough to 
warrant concentration.  Fortunately, the function of interest is 
also convex, so that if we consider

ϵ
4. Suprema of Rademacher processes 

ζ(x) − ζ(y) ≤ ⟨b*(x), x⟩ − ⟨b*(x), y⟩

where  is some closed subset of the unit Euclidean ball of
,we can rewrite it as  and notice that for 

all ,

B
ℝn ζ(x) = ⟨b*(x), x⟩

x, y ∈ [−1,1]n

ζ(x) = sup
b∈B

⟨b, x⟩

≤ 2
n

∑
i=1

|b*i (x) |1xi≠yi



We see that  the function  obeys to   ζ 𝒞v

Weak bounded differences condition 

          

for all  and .  
where the ’s are non negative measurable function 

satisfying 

ζ(x1, . . . , xn) − ζ(y1, . . . , yn) ≤
n

∑
i=1

ci(x)1xi≠yi

x1, . . . , xn y1, . . . , yn
ci

∥
n

∑
i=1

c2
i ∥∞ ≤ v

with  in the Rademacher case above. Note that the 
Rademacher assumption is not essential here. If the errors 
are absolutely bounded by , then the conclusion would 
be the same but with a different value for  ( ).

v = 4

M
v v = 4M2



Mc Diarmid’s bounded difference condition (1978) involves  

 instead of . It took time before one 

realizes that it was possible to prove sub-Gaussian 
concentration bounds under the weaker condition .  

Talagrand has introduced a clever tool to deal with such  
functions: the convex distance ! 

As we shall see Talagrand’s approach naturally leads to 
concentration around the median. If one wants to save 
constants it is easier to  use the transportation which leads to 
concentration around the mean through some nice variational 
argument.

n

∑
i=1

∥c2
i ∥∞ ∥

n

∑
i=1

c2
i ∥∞

𝒞v

Let's see how it all works! 



M. Talagrand’s approach to the concentration of product 
probability measures is inspired by geometry. 
Basically his approach is a cleverly modified version of the 
isoperimetric approach introduced by Vitali Milman and which 
goes as follows.

The isoperimetric approach

If  and  is a Borel probability measure, the 
concentration rate function  of  is defined as 
               

(𝒳, d) μ
γ μ

γ(t) = sup
A,μ(A)≥1/2

μ{d( . , A) ≥ t}

Note that if  is the standard normal distribution on a 
Euclidean space, then Borell’s theorem ensures that   

 

μ

γ(t) ≤ ∫
∞

t
exp(−u2/2)du ≤

1
2

e−t2/2

Talagrand’s convex distance



.f(x) ≤ f(y) + d(x, y) < s + t

Now, if   is a 1-Lipschitz function and  is a point such that 
 , then, there exists some point  such that 

 and  and therefore  

f x
d(x, {f ≤ s}) < t y
f(y) ≤ s d(x, y) < t

In other words the level sets of a 1-Lipschitz function have 
the property that 
               
which directly implies that choosing  as a median  of  
under ,  and changing  into  leads  
to a similar result on the left tail. Finally 
                     
which establishes the connection between the concentration 
of measure and the concentration of 1-Lipschitz functions 
around their median.

{f ≥ s + t} ⊆ {d( . , {f ≤ s}) ≥ t}
s M f

μ μ{f − M ≥ t} ≤ γ(t) f −f

μ{ | f − M | ≥ t} ≤ 2γ(t)



Coming back to M. Talagrand’s approach to the concentration 
of product probability measures,  let us now introduce his 
concept of « convex distance » .dT

Definition 
Let  be some product space and denote by  the set 

. Given 

some point  and some subset  of  one defines 

               

𝒳n B+
n

{α ∈ ℝn |
n

∑
i=1

α2
i ≤ 1 and αi ≥ 0,∀1 ≤ i ≤ n}

x ∈ 𝒳n A 𝒳n

dT(x, A) = sup
α∈B+

n

inf
y∈A

n

∑
i=1

αi1xi≠yi



This « distance » is especially well designed to deal with 
functions which satisfy the weak bounded differences  
condition above. Indeed assume that  is such a function f

f(x) − f(y) ≤
n

∑
i=1

ci(x)1xi≠yi

Suppose also that .  

Choosing  to be a level set  and taking some point ,  
if , since , this means that

∥
n

∑
i=1

c2
i ∥∞ ≤ 1

A {f ≤ s} x
dT(x, A) < t c(x) ∈ B+

n

f(x) − f(y) ≤
n

∑
i=1

ci(x)1xi≠yi
f(x) − f(y) ≤

n

∑
i=1

ci(x)1xi≠yi
f(x) − f(y) ≤

n

∑
i=1

ci(x)1xi≠yi

inf
y∈A

n

∑
i=1

ci(x)1xi≠yi
≤ dT(x, A) < t



and the above condition on  implies that .f f(x) < s + t

n

∑
i=1

ci(x)1xi≠yi
< t

So that there exists some point  such that ,  
for which

y f(y) ≤ s

In other words we have proved that under the weak bounded 
difference condition, the level sets of a function have the 
property (*) that 
               

provided that  

{f ≥ s + t} ⊆ {dT( . , {f ≤ s}) ≥ t}

∥
n

∑
i=1

c2
i ∥∞ ≤ 1

Here, everything works as if Talagrand’s convex distance were  
an actual distance and the function  were 1-Lipschitz with 
respect to this distance.

f



X

If one copy/paste Milman’s isoperimetric approach, 
ultimately, one has to switch to . Obviously this is not 
possible to do that here because the weak bounded 
difference condition is not symmetric. One needs a new 
idea…

−f

Talagrand has the solution! At this step: use a stronger 
version of the concentration rate.



If  is a random variable taking its values in  
the quantity introduced by Talagrand is  
                 

By property (*), it is true that for all  and all positive  
          . 
Now, taking  to be a median of  and choosing either  

 or  leads to

X 𝒳n

θ(t) = sup
A

P(X ∈ A)P(dT(X, A) ≥ t)

s t
P( f(X) ≤ s)P( f(X) ≥ s + t) ≤ θ(t)

M f(X)
s = M s = M − t

P( f(X) ≥ M + t) ∨ P( f(X) ≤ M − t) ≤ 2θ(t)
In other words, if one is able to handle , the  
concentration of   around its median follows. One of 
the beautiful results established by Talagrand is that  

 whenever the variables  
are independent.

θ(t)
f(X)

θ(t) ≤ exp(−t2/4) X1, X2, . . . , Xn



Talagrand’s convex distance inequality 
Let  be independent random variables taking 
there values in . For all measurable set  the 
following inequality holds for all positive  
        

X1, X2, . . . , Xn
𝒳n A ∈ 𝒳n

t
P(X ∈ A)P(dT(X, A) ≥ t) ≤ exp(−t2/4)

This result has an immediate corollary.

Corollary 
Let  be a measurable function of 
independent random variables. Assume that the function  
satisfies to the weak bounded differences condition above 

and suppose furthermore that . Then  

      

Z = f(X1, . . . , Xn)
f

∥
n

∑
i=1

c2
i ∥∞ ≤ v

P(Z ≥ M + t) ∨ P(Z ≤ M − t) ≤ 2 exp(−
t2

4v
)



The transportation approach to concentration starts with 
the following idea. Let us consider some coupling 

 between  and . 
We start with the identity
P ∈ 𝒫(Pn, Q) Pn Q

EQ(ζ) − EPn(ζ) = EP(ζ(Y ) − ζ(X))

By the weak bounded differences condition  and 
Cauchy-Schwarz we can write

𝒞v

EP(ζ(Y ) − ζ(X) |Y ) ≤
n

∑
i=1

ci(Y )P(Xi ≠ Yi |Y )

≤
n

∑
i=1

c2
i (Y )

n

∑
i=1

P2(Xi ≠ Yi |Y )

Concentration around the mean through transportation



And by Cauchy-Schwarz inequality again

Since  we finally derive that∥
n

∑
i=1

c2
i ∥∞ ≤ v

EQ(ζ) − EPn(ζ) ≤ v inf
P∈𝒫(P,Q)

n

∑
i=1

EP(P2(Xi ≠ Yi |Y ))

Now it remains to use the following remarkable  
coupling inequality due to K. Marton



Marton’s coupling inequality 
Let  be some product probability 
measure on some product space  and  be a probability 
distribution on  such that  then 

and 

Pn = μ1 ⊗ μ2 ⊗ . . . ⊗ μn
𝒳n Q

𝒳n Q ≪ Pn

X

min
P∈𝒫(P,Q)

EP(
n

∑
i=1

P2(Xi ≠ Yi |X)) ≤ 2D(Q∥Pn)

If we use this coupling result we can conclude that

EQ( f ) − EPn( f ) ≤ 2vD(Q∥Pn)

min
P∈𝒫(P,Q)

EP(
n

∑
i=1

P2(Xi ≠ Yi |Y )) ≤ 2D(Q∥Pn)

And the same inequality holds for    just conditioning by 
X instead of Y. What about concentration then?

−f



The key is the following lemma which tells us that the preceding 
inequality is a way of « encoding » sub-gaussianity

From transportation to concentration 

Lemma 
Let  be some integrable random variable. Given , 
the two following assertions are equivalent. 

1) For all ,    

2) For all ,  

Z v > 0

λ ∈ ℝ+ log EP(eλ(Z−EPZ)) ≤
λ2

2v
Q ≪ P EQ(Z) − EP(Z) ≤ 2vD(Q∥P))

Proof? 



X

Variational formula for entropy 
Let  be some real valued random variable,                   
                 

Y
log EP(eY) = sup

Q≪P
EQ(Y ) − D(Q∥P)

It is a direct consequence of the 

Indeed, given positive numbers  and  let us start from the 
following elementary formula: 

                          

a v

inf
λ>0

(a
λ

+
λv
2 ) = 2av



X

Use this formula with  allows to rewrite  
assertion 2) as 

a = D(Q∥P)

which is exactly equivalent to 1) because of the variational 
formula                        

EQZ − EPZ ≤
D(Q∥P)

λ
+

λv
2

For all positive  and all  or equivalentlyλ Q ≪ P

sup
Q≪P

λ(EQ(Z) − EP(Z)) − D(Q∥P) ≤ λ2v/2

Conclusion: a function  of independent 
variables with  satisfying   is sub-Gaussian with 
variance factor                

Z = ζ(X1, . . . , Xn)
ζ 𝒞v
v



This means that for all λ

P{Z − EZ ≥ t} ∨ P{EZ − Z ≥ t} ≤ e− t2
2v

And of course by Chernoff’s inequality sub-Gaussian tail bounds 
follow

log E(eλ(Z−EZ)) ≤
λ2

2v

Ultimately these tail bounds are the same as in the 
Gaussian case for a   -Lipschitz function.v
Bonus (teasing for Anna’s talk): A proof of Talagrand’s convex 
distance inequality can be derived from this result just because 

 itself satisfies to the weak bounded differences 
condition  .
dT( . , A)

𝒞1



 
Lecture 2



In the Euclidean space , one observes the random vector 
                                  
where the variables  are i.i.d. centered and 

normalized rv’s .  is is the level of noise which is assumed to 
be known.  is the unknown mean vector to be estimated.

ℝn

Y = f + σϵ
ϵj, 1 ≤ j ≤ n

σ
f

Back to the model selection issue

We consider some collection  of linear subspaces of 
). To each model  corresponds the LSE  defined on it, 

in other words  is merely the orthogonal projection of  
onto . Denoting by  the orthogonal projection of  onto 

, the quality of model  is reflected by the quadratic 
risk of  
                                  

(Sm)m∈ℳ
ℝn Sm

̂fm
̂fm Y

Sm fm f
Sm Sm

̂fm
Ef∥f − ̂fm∥2



Ef∥ ̂fm − f∥2 − ∥f∥2 = −∥fm∥2 + σ2Dm

Here the quadratic risk is explicitly computable

and Mallow’s criterion 

(*)

crit(m) = −∥ ̂fm∥2 + 2σ2Dm

is merely an unbiased estimator of (*)

Unbiased risk estimation principle

This analysis is performed in expectation, for each given 
model. What happens if  is huge?ℳ

Is it correct in any case? How to correct it if it breaks down?  



The key is to specify how close is   to its expectation  
, uniformly with respect to .

∥ ̂fm∥2

∥fm∥2 + σ2Dm m ∈ ℳ

χ2
m =∥ Πm(ϵ) ∥2= ∑

1≤ j≤Dm

⟨ϵ, ϕ(m)
j ⟩2

Essentially, this amounts to understand the behavior of  

This a task that one can perform in different ways in the  
Gaussian case since this quantity follows a chi-square 
distribution. 
In the non-Gaussian case it is no longer a sum of 
independent variables and this is why concentration tools 
are interesting here.



This quantity of interest in our statistical problem can be 
written as

Back to suprema of Rademacher processes

In this case  and a Poincaré type inequality can 

be used to show that . Combining this with the 
preceding tail bounds leads to the following controls. Except 
on a set with probability less than 

E(χ2
m) = Dm

Var(χm) ≤ 2

e−x

χm = sup
b∈Sm,∥b∥≤1

⟨b, ϵ⟩

χm ≤ Dm + 2 2x

And similarly

χm ≥ (Dm − 2)+ − 2 2x

The needed upper and lower tail bounds are on the shelf!



Coming back to the model selection issue, one can prove two 
complementary results that help the understanding of 
penalized least-squares criteria in a sharp way. 

Those results will have the same flavor as those proved 25 
years ago by Birgé and M. in the Gaussian case except that we 
have relaxed here the Gaussian assumption.

5. Cut-off phenomena for penalized model selection



Model selection Theorem 1  
Let  be a family of non negative numbers such that  

                    

Let  be given and assume that 
 for all . Let  

minimizing the penalized least-squares criterion 
 

over . The corresponding penalized least-squares  
estimator  satisfies to the following risk bound 

where  depends only on .

(xm)m∈ℳ

∑
m∈ℳ

exp(−xm) = Σ < ∞

K > 1
pen(m) ≥ Kσ2( Dm + 2 2xm)2 m ∈ ℳ m̂

crit(m) = −∥ ̂fm∥2 + pen(m)
m ∈ ℳ

̂fm̂

C(K) K

Ef∥ ̂fm̂ − f )∥2 ≤ C(K )( inf
m∈ℳ

(∥f − fm∥2 + pen(m)) + (1 + Σ)σ2)

Upper tails in action



Choice of the weights and link with the oracle

As in the original work of Birgé and M. , the weights have 
some Bayesian flavor since it plays the role of a prior finite 
measure on the list of models. But one can choose them in a 
way that enlightens the price to pay for redundancy of 
models with the same dimension.

Penalized least squares you say?

One could be surprised to see a non-positive quantity 
appear in the « least-squares » penalized criterion. It is 
just an artifact, because the identity  

ensures that substituting  to  in the 
definition of the criterion is painless.

∥Y − ̂fm∥2 −∥ ̂fm∥2
∥Y − ̂fm∥2 − ∥Y∥2 = −∥ ̂fm∥2



Choi 







if POIL 

Sketch of proof of Theorem 1









If we want to analyze the sharpness of the constraint  
in the preceding Theorem, one has to take some asymptotic 
point of view in which we explicitly allow the collection of 
models  to depend on  and let  (and therefore ) 
tends to infinity. More precisely we assume that for some 
model  with dimension  one has  . If the 
number of models per dimension is sub-exponential and if we 
take a penalty of the form

K > 1

ℳN N N n

SmN
N Sm ⊆ SmN

                            pen(m) = Kσ2Dm

the preceding theorem gives a positive result as soon as 
. What about ?K > 1 K < 1

The answer is that the criterion explodes!



Model selection Theorem 2  

Assume that . Let  be given.  
Let  minimizing the penalized least-squares criterion 
                           
over . For any positive , there exists some 
(which depends neither on  nor on  ) such that whenever 

, 
                        
Meanwhile, if  is large enough 

                

N−1 log|ℳN| → 0 K < 1
m̂

−∥ ̂fm∥2 + Kσ2Dm
m ∈ ℳN δ N0(K, δ)

σ f
N ≥ N0(K, δ)

P{Dm̂ ≥ N/2} ≥ 1 − δ
N

Ef∥ ̂fm̂ − f∥2 ≥ ∥f − fmN
∥2 + σ2N/4

Lower tails in action



Sketch of proof of Theorem 2





Let us consider the simplest situation for which there is only 
one model per dimension.  The typical situation of this kind is 
as follows. Take some orthonormal system  

and take as a collection of models , where  is 

spanned by . Combining the two Theorems 
above tells us that for the criterion  
                            
there is some cut-off at the critical value 

{ϕj,1 ≤ j ≤ N}
(SD)1≤D≤N SD

{ϕj,1 ≤ j ≤ D}

−∥ ̂fD∥2 + Kσ2D
K = 1

Illustration

• Below this value the criterion explodes in the sense that 
that it chooses large dimensional models with high 
probability. 

• Above this value the criterion chooses a sensitive model (it 
can be proved in this case that  is asymptotically the 
best value)

K = 2



This framework is especially meaningful in the situation 
where one wants to estimate some function  on  from 
noisy observations  , . In this case  
the Fourier basis can be used to build the above nested 
family of models and having in mind that  is large makes 
sense.  
Choosing a good model here means approximating the 
function  from the data by a convenient trigonometric 
polynomial.

f [0,1]
Yi = f(i/n) + σϵi 1 ≤ i ≤ n

n

f

Connection with non parametric estimation

The cut-off phenomenon can be exploited to perform fully 
automatic model selection without knowing the level of noise, 
just by identifying the minimal penalty from the data  
and multiplying it by 2 to perform the final model selection.
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