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Lecture 1



1. Overview

Concentration of product probability measures

Michel Talagrand received the Abel Prize in 2024. His
scientific output is enormous, and it would be futile for
anyone to attempt to cover it all or even summarize it.

This remains true even if we focus on his work on product
probability measures in the 1990s that has had an impact in
statistics and machine learning (among other domains).
Our goal here is much more modest.

Instead we propose to solve a kind of « guided exercise »
that will illustrate the power of this connection, following
the lines of our recent paper with V. Rivoirard.



Why should we care about concentration of product
probability measures ?

e Functions of independent random variables include
suprema of empirical processes

e Non asymptotic sub-Gaussian probability bounds for
suprema of empirical processes can be used as non
asymptotic substitutes of the central limit theorem to

study the behavior of empirical risk minimizers.
e This was the main reason for which these concentration
results became popular in statistics and machine learning.

This is the global picture. Let us now turn to a more specific
issue which illustrate the importance of getting exponential

probability bounds.



Estimator (and model) selection

A versatile approach to functional estimation consists of
considering some (possibly huge) collection of estimators

{fm}meﬂ of some target f and define some genuine

selection rule 71 from the data. This includes the case of a
collection of empirical risk minimizers (model selection).

The statistical performance of such a procedure can be
evaluated through some given loss function £ . One would

like the risk EZ(f, fm) to be as close as possible to the oracle

benchmark A
inf EZ(f,f,)
men



In many cases the selection procedure involves some

hyperparemeter A and most of the positive results ensuring
that the selected estimator behaves approximately like an

oracle are proved under the constraint that A is larger than
some quantity which is more or less precisely known. The

choice of 4 is left to the user...

Main point in what follows

Negative results ensuring that below some critical value the
procedure breaks down can be very helpful. The existence of
such cut-off phenomena fully can be proved via concentration

Let us now move on to the specific simple context in which we
will illustrate this point (our guided exercice!).



2. The classical linear regression framework

In the Euclidean space R", one observes the random vector
Y =f+ e
where the variables ¢;, 1 < j < narei.i.d. centered and

normalized rv’s . o is is the level of noise which is assumed to
be known. f is the unknown mean vector to be estimated.

If we go back to statistics in the fifties the linear model
assumption would specify that the unknown mean vector

belongs to some linear subspace S of the Euclidean space R"



Once this constraint is given, f can merely be estimated by
the least squares estimator (LSE) defined by

f=argmin || Y — g ||?
ges

In the seventies many efforts have been developed to
propose model selection criteria in order to relax the
constraint that the mean vector belongs to a linear
model which is given in advance. In the spirit of the
works by Birge and M. we have in mind that models as

well as their collection are allowed to depend on n



3. Model selection

Model selection proceeds in two steps:

« Take some finite collection of linear models (S,)), . »
(which are merely subsets of R"). To each model S,,
corresponds the LSE fm defined on it.

« Use the data to select a value m in ./, the selected model
being S, and the corresponding estimator fm

According to the non asymptotic point of view the quality of
a model selection procedure is measured by the quadratic

risk of the resulting estimator Ef||fm — 11%.



In other words one ideally would like the selected estimator to

behave like an oracle, i.e. minimize the quadratic risk of fm,
which by Pythagoras’ identity can be written as

EAfyn = f112 = I = £l + EAlf — £l

where f denotes the orthogonal projection I1 f of f onto

\)

m

It is interesting to analyze the random term of this expression

1/ = Lol = 2T €3




Taking some orthonormal basis {qﬁj(m),l <Jj<D,}of§,

we see that

i =l TL,(0) = ) <e,¢;m>>1

1<j<D,

so that the random term is a chi-square type statistics. In
particular the quadratic risk can be computed as

Elf, = fII? = If = f,lI* + 67D}

Mallows’ tricky idea consists of noticing that minimizing the
quadratic risk is equivalent to minimizing this risk minus

the constant term ||f]|?, i.e.



Unbiased risk estimation and Mallows’ heuristics
r 2 2 2 2 %
Ellf =117 = If1I* = =IIf,lI* + 6°D,y )

just, by using Pythagoras’ identity again.

By similar arguments, we also have

T 2 2
So that the quantity

crit(m) = —[If,,lI> + 26°D,]

turns out to be an unbiased estimator of (*)



This is precisely Mallows’ criterion!

Mallows’ heuristics relies on the belief that what you see in
expectation is what you see on the data.

Justifying or correcting this belief has been the main
motivation for introducing concentration inequalities in our
long-standing collaboration with Lucien Birge on this topic,
starting 30 years ago.

The key is to specify how close is ||fm||2 to its expectation
||f,,,,l||2 -+ asz, uniformly with respect tom € /.

Essentially, this amounts to understand the behavior of

i =l TL,(0) 1= ) <e,¢;m>>j

1<;<D,,




Link with concentration issues

The idea is to rewrite the square root of the chi-square type
statistics as

Ym = SUP <79,€>‘
besS .||bl|<1

This makes clear that y, is a 1-Lipschitz function of €.
In Birgé and M. (2000) this fact has been used in the Gaussian

case since if € is standard normal on R”, it is known since 75’
that for a 1-Lipschitz function

P{l(e) >M+1} <e "3

where M denotes either the mean or the median of {(¢)



4. Suprema of Rademacher processes

Assume now that ¢ is a Rademacher random vector. This is

more tricky since it is known that Lipschitz is not enough to
warrant concentration. Fortunately, the function of interest is
also convex, so that if we consider

C(x) = sup<79,X>‘

beB
where B is some closed subset of the unit Euclidean ball of

R”,we can rewrite it as {(x) = (b*(x), x) and notice that for
allx,y e [—1,1]",

£(x) = ¢(y) < (O¥(x), X) = (O¥(X), ¥)

<2 15F@) | Ly,
=




We see that the function { obeys to &

v

Weak bounded differences condition .
O a ) = COps oY) £ Y 0y
i=1

forall x;,...,x,and y;,...,y,.
where the c¢,’s are non negative measurable function
n

with v = 4 in the Rademacher case above. Note that the
Rademacher assumption is not essential here. If the errors

are absolutely bounded by M, then the conclusion would
be the same but with a different value for v (v = 4M2).



Mc Diarmid’s bounded difference condition (1978) involves

n n
2 : 2 [ ]
E |c7|| o instead of || E ¢7|| - It took time before one

i=1 i=1
realizes that it was possible to prove sub-Gaussian

concentration bounds under the weaker condition & .

Talagrand has introduced a clever tool to deal with such
functions: the convex distance !

As we shall see Talagrand’s approach naturally leads to
concentration around the median. If one wants to save
constants it is easier to use the transportation which leads to
concentration around the mean through some nice variational
argument.

Let's see how it all works!



Talagrand’s convex distance

M. Talagrand’s approach to the concentration of product
probability measures is inspired by geometry.
Basically his approach is a cleverly modified version of the

isoperimetric approach introduced by Vitali Milman and which
goes as follows.

The isoperimetric approach

If (X', d) and i is a Borel probability measure, the
concentration rate function y of i is defined as
y() = sup pid(.,A) >t}
Au(A)>1/2

Note that if y is the standard normal distribution on a

Euclideal?>o space, then Borell’s theorem ensures that

1
y(t) < [ exp(—u?/2)du < Ee—f2/2

5



Now, if f is a 1-Lipschitz function and x is a point such that
d(x,{f < s}) < t, then, there exists some point y such that
f(y) < sandd(x,y) < t and therefore

fx) < fy)+dx,y) <s+t.

In other words the level sets of a 1-Lipschitz function have
the property that

{f>s+1t} C{d(.,{f<s}) >t}
which directly implies that choosing s as a median M of f
under u, u{f — M > t} < y(t) and changing f into —f leads
to a similar result on the left tail. Finally
pllf—M| >t} <2y()
which establishes the connection between the concentration

of measure and the concentration of 1-Lipschitz functions
around their median.



Coming back to M. Talagrand’s approach to the concentration
of product probability measures, let us now introduce his

concept of « convex distance » d.

Definition

Let 2" be some product space and denote by B the set
n

(a € R"| Z o’ < landa; > 0,¥1 <i < n}. Given
=

some point x € X" and some subset A of X" one defines

d(x,A) = sup inf Z al, .,

aEB+y€A




This « distance » is especially well designed to deal with
functions which satisfy the weak bounded differences

condition above. Indeed assume that f is such a function
n

f@) =) < ) e,y
=

n
Suppose also that || Z Ci2||oo <
i=1
Choosing A to be a level set {f < s} and taking some point x,
if d;(x,A) < t, since c(x) € B}, this means that

n

intf ) c,(x)1
yeA o

by S dr(x,A) <t



So that there exists some point y such that f(y) < s,

for which ,
2. 01, <

i=1
and the above condition on f implies that f(x) < s + 1.

In other words we have proved that under the weak bounded
difference condition, the level sets of a function have the
property (*) that

(f2s+0) Cld Af<sH 2 1)
provided that || Z Cl.2||OO |
i=1

Here, everything works as if Talagrand’s convex distance were

an actual distance and the function f were 1-Lipschitz with
respect to this distance.



If one copy/paste Milman’s isoperimetric approach,

ultimately, one has to switch to —f. Obviously this is not
possible to do that here because the weak bounded
difference condition is not symmetric. One needs a new

idea...

Talagrand has the solution! At this step: use a stronger
version of the concentration rate.



If X is a random variable taking its values in 2"
the quantity introduced by Talagrand is
0(t) = sup P(X € A)P(d(X,A) > 1)
A
By property (*), it is true that for all s and all positive 7

P(f(X) <P(f(X)>s+1) <0(1).
Now, taking M to be a median of f(X) and choosing either
s=Mors=M—tleads to

P(JX) > M+ 1)V P(f(X) <M —1) < 20(1)

In other words, if one is able to handle 6(¢), the

concentration of f(X) around its median follows. One of
the beautiful results established by Talagrand is that

0(t) < exp(—1*/4) whenever the variables X, X5, ..., X,
are independent.




Talagrand’s convex distance inequality
Let X, X, ..., X beindependent random variables taking
there values in X". For all measurable set A € X" the

following inequality holds for all positive ¢
P(X € A)P(d(X,A) > 1) < exp(—t/4)

This result has an immediate corollary.

Corollary
Let Z = f(X,,...,X ) be a measurable function of

independent random variables. Assume that the function f
satisfies to the weak bounded differences condition above

n
and suppose furthermore that || Z ci2||oo < v. Then

i=1
P

[
PZ>M+t)vVP(Z<M-1t)< 2exp(—4—)
y




Concentration around the mean through transportation

The transportation approach to concentration starts with
the following idea. Let us consider some coupling

P € 2(P", Q) between P" and Q.
We start with the identity

Eo(C) = Epi&) = Ep(C(Y) — (X))

By the weak bounded differences condition €, and
Cauchy-Schwarz we can write

Ep(((Y) = (DY) < ) c(VIPX; # Y| Y)
=1

< Zn:ciz(Y) iPz(Xi # Y, |Y)
= =1



And by Cauchy-Schwarz inequality again

n
Since || Z Ci2||OO < v we finally derive that
i=1

Pe AP, Q)

Eo(©) = Ep(0) s\/ inf Z Ep(P(X, # Y,| 1))

Now it remains to use the following remarkable
coupling inequality due to K. Marton



Marton’s coupling inequality

Let P" = p; @ ) ® ... @ p,, be some product probability
measure on some product space 2" and Q be a probability
distribution on 2" such that O << P” then

min _Ep( 3 PX, # ¥,1X)) < 2D(0]|P"
i=1

PeXA(P,0)
and . S
min Ep( ) PXX, # Y;|Y)) < 2D(Q||P")
PeX(P,0)

i=1

If we use this coupling result we can conclude that

Eo(f) — Epf) < +/2vD(Q|IP")

And the same inequality holds for —f just conditioning by
X instead of Y. What about concentration then?




From transportation to concentration

The key is the following lemma which tells us that the preceding
inequality is a way of « encoding » sub-gaussianity

Lemma

Let Z be some integrable random variable. Given v > 0,

the two following assertions are equivalent.2

A
1) Forall 1 € R*, log Ep(e?%Er?)) < >
N

2) Forall Q < P, E(Z) — Ep(Z) <+/2vD(Q||P))

Proof?



It is a direct consequence of the

Variational formula for entropy
Let Y be some real valued random variable,

log Ep(e”) = sup Eg(Y) = D(Q||P)
O<kP

Indeed, given positive numbers a and v let us start from the
following elementary formula:

inf (% +’17V) =/ 2av

A>0



Use this formula with a = D(Q||P) allows to rewrite
assertion 2) as

D(Q]|P) N AV

E.7Z—E,7 <
© = 2

For all positive 4 and all O << P or equivalently

sup MEy(Z) — Ep(Z)) — D(Q||P) < A7v/2
O<P

which is exactly equivalent to 1) because of the variational
formula =

Conclusion: a function Z = {(X;, ..., X)) of independent
variables with ( satisfying &, is sub-Gaussian with
variance factor v



This means that for all A

/12
log E(e" %Dy < Z_
PAY,

And of course by Chernoff’s inequality sub-Gaussian tail bounds
follow

P{Z—EZ>t)VP{EZ—Z>t} <e >

Ultimately these tail bounds are the same as in the
Gaussian case for a /v -Lipschitz function.

Bonus (teasing for Anna’s talk): A proof of Talagrand’s convex
distance inequality can be derived from this result just because

d(.,A) itself satisfies to the weak bounded differences
condition &;.



Lecture 2



Back to the model selection issue

In the Euclidean space R”, one observes the random vector
Y=f+ ¢
where the variables ¢;, 1 < j < narei.i.d. centered and

normalized rv’s . o is is the level of noise which is assumed to
be known. fis the unknown mean vector to be estimated.

We consider some collection ($,,),, , of linear subspaces of
R™). To each model S,, corresponds the LSE fm defined on it,
in other words fm is merely the orthogonal projection of Y
onto S,,. Denoting by f, the orthogonal projection of f onto
S,,, the quality of model S, is reflected by the quadratic
risk of fm

ENf— fll?



Unbiased risk estimation principle

Here the quadratic risk is explicitly computable

Edlf,, =17 = WAI? = =, 1> + 6*D,] )

and Mallow’s criterion

crit(m) = —||f,,ll° + 20°D))

is merely an unbiased estimator of ()

This analysis is performed in expectation, for each given
model. What happens if . is huge?

Is it correct in any case? How to correct it if it breaks down?



The key is to specify how close is || fmll2 to its expectation
£, |I? + 62D, , uniformly with respect to m € /.

Essentially, this amounts to understand the behavior of

i =1 T,(0) IP= ) <e,¢;m>>2‘

1<j<D,

This a task that one can perform in different ways in the
Gaussian case since this quantity follows a chi-square
distribution.

In the non-Gaussian case it is no longer a sum of
independent variables and this is why concentration tools
are interesting here.



Back to suprema of Rademacher processes

This quantity of interest in our statistical problem can be
written as

Ym = SUD <I5,€>‘
besS, ||1b||<1

In this case E(y>) = D. and a Poincaré type inequality can
Am m

be used to show that Var( m) < 2. Combining this with the
preceding tail bounds leads to the following controls. Except
on a set with probability less than e

Y ZA/D,, +2\/2x
i 2 1/ (D=2, = 2y/2x

The needed upper and lower tail bounds are on the shelf!

And similarly




5. Cut-off phenomena for penalized model selection

Coming back to the model selection issue, one can prove two
complementary results that help the understanding of
penalized least-squares criteria in a sharp way.

Those results will have the same flavor as those proved 25
years ago by Birge and M. in the Gaussian case except that we
have relaxed here the Gaussian assumption.



Upper tails in action

Model selection Theorem 1
Let (x,,),,c , be a family of non negative numbers such that

exp(—x,) = 2 < ©

=N/A
Let K > 1 be given and assume that

pen(m) > Kaz(\/ + 24/2x,, ) for allm € M. Let i1

minimizing the penahzed least-squares criterion
2
crit(m) = —||f,,lI* + pen(m)
over m € . The corresponding penalized least-squares
estimator [, satisfies to the following risk bound

Ellfs =PI < CE)( inf (If = 1,]I* + pen(m) + (1 + Z)o?)
where C(K) depends only on K.




Penalized least squares you say?

One could be surprised to see a non-positive quantity
appear in the « least-squares » penalized criterion. It is
just an artifact, because the identity

1Y = £ull® = 1Y11% = =[£I

ensures that substituting ||Y — f r

I to = 17,117 in the
definition of the criterion is painless.

Choice of the weights and link with the oracle

As in the original work of Birge and M. , the weights have
some Bayesian flavor since it plays the role of a prior finite
measure on the list of models. But one can choose them in a
way that enlightens the price to pay for redundancy of
models with the same dimension.
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Sketch of proof of Theorem 1
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If we want to analyze the sharpness of the constraint K > 1

in the preceding Theorem, one has to take some asymptotic
point of view in which we explicitly allow the collection of

models .# ,; to depend on N and let N (and therefore n)
tends to infinity. More precisely we assume that for some

model 5, with dimension N one has 5,, € 5, . If the

number of models per dimension is sub-exponential and if we
take a penalty of the form

pen(m) = Ko°D,,

the preceding theorem gives a positive result as soon as
K > 1. What about K < 1?

The answer is that the criterion explodes!



Lower tails in action

Model selection Theorem 2

Assume that N~ log|.Z | — 0. Let K < 1 be given.
Let 71 minimizing theApenalized least-squares criterion
_”fm”2 + KGsz
over m € J . For any positive 0, there exists some Ny(K, o)
(which depends neither on ¢ nor on f) such that whenever
N > Ny(K,5),
P{D;, >N/2} >1-0¢
Meanwhile, if /V is large enough

EAfs = fIP 2 f =, II* + 0°N/4




Sketch of proof of Theorem 2
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[Lllustration

Let us consider the simplest situation for which there is only
one model per dimension. The typical situation of this kind is

as follows. Take some orthonormal system {¢.,1 < j < N}

and take as a collection of models (SD) 1<D<N> Where S, is

spanned by {¢.,1 < j < D}. Combining the two Theorems
above tells us that for the criterion
~[l/plI* + K&*D
there is some cut-off at the critical value K = 1
e Above this value the criterion chooses a sensitive model (it
can be proved in this case that K = 2 is asymptotically the
best value)

e Below this value the criterion explodes in the sense that
that it chooses large dimensional models with high
probability.



Connection with non parametric estimation

This framework is especially meaningful in the situation
where one wants to estimate some function f on [0,1] from

noisy observations Y; = f(i/n) + o¢;, 1 <1 < n. In this case
the Fourier basis can be used to build the above nested
family of models and having in mind that 7 is large makes
sense.

Choosing a good model here means approximating the

function f from the data by a convenient trigonometric
polynomial.

The cut-off phenomenon can be exploited to perform fully
automatic model selection without knowing the level of noise,
just by identifying the minimal penalty from the data

and multiplying it by 2 to perform the final model selection.
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